Information Sciences and Computer Engineering, Vol. 1, No. 1, (2010) 1-8

/’“ International Journal of
PHARU

Information Sciences and Computer Engineering

journal homepage: http://www.ijisce.org

L&lomputer

Collision Resistant Temporally Ordered Routing Algorithm

Vinay Thotakura, Mahalingam Ramkumar*

Department of Computer Science and Engineering, Mississippi State University, Box 9637, Starkville, MS 39762

Abstract— A broad class of mobile ad hoc network (MANET) applications will
require every mobile node in a connected subnet to establish persistent paths
with a single sink or gateway or command-post. Temporally ordered rout-
ing algorithm (TORA) is the only MANET routing protocol which has been
explicitly designed to facilitate such a requirement. However, TORA has
several shortcomings like i) the need for an expensive lower layer, the Inter-
net MANET Encapsulation protocol (IMEP); and ii) substantial overhead in
scenarios involving subnet partitions. We propose a novel protocol, collision-
resistant TORA (CR-TORA), which is also designed to meet the same goal
as TORA, viz., to lower overhead for establishing persistent paths from all
nodes to a destination. However, CR-TORA overcomes the shortcomings
of TORA. Simulations show that for the intended application scenario CR-
TORA demands lower number of total packets to be transmitted to realize
higher data packet throughput, with lower latency.

1. Introduction

A mobile ad hoc network (MANET) is a collection of mo-
bile nodes which can communicate with each other over multiple
hops, using other nodes in the subnet as routers. Several proac-
tive and reactive MANET routing protocols [1] have been pro-
posed in the literature which permit any two nodes in the subnet
to establish a path.

Among several applications of MANETSs, many will require
establishment of persistent paths from all mobile nodes to one,
or a small number of (possibly mobile) sink(s). One example is
a system that facilitates every mobile soldier to relay messages
to a command post. Another is that of a sensor network used
for monitoring mobile fauna, where mobile sensors periodically
send data to a single sink. A third example is that of wireless
gateways in rural areas, where multi-hop connectivity from the
mobile nodes to the gateway can substantially enhance the cov-
erage that can be provided by the gateway.

Temporally ordered routing algorithm (TORA) [2, 3] was ex-
plicitly designed for application scenarios requiring persistent
paths from all mobile nodes to one sink. This is in contrast to
other popular MANET routing protocols like dynamic source
routing (DSR) [4], ad hoc on-demand distance vector (AODV)
[5] and destination sequenced distance vector (DSDV) [6], which
aim to establish paths between all nodes in a connected subnet.

*Corresponding author:
Email address: ramkumar@cse.msstate.edu, Ph: +1 6623258435

1.1. Contribution

The contribution of this paper is a novel routing protocol,
collision-resistant TORA (CR-TORA), which shares a basic de-
sign goal with TORA - to lower overhead for establishing mul-
tiple persistent paths from all nodes to a destination. CR-TORA
is however designed to overcome many shortcomings of TORA
[7].

Firstly, TORA relies on a lower layer - the Internet MANET
encapsulation protocol (IMEP) [8] - to provide a collision free
environment for TORA. The overhead for IMEP itself can be
substantial. CR-TORA is designed to obviate the need for an
expensive lower layer to address collisions. Secondly, under con-
ditions of network partitions TORA results in significant con-
trol message overhead and a long “settling time” before which
nodes in a partitioned subnet can realize that they do not have
a valid path to the destination. This can result in needless at-
tempts to transmit data packets which are ultimately bound to
fail. CR-TORA is designed to ensure that nodes recognize such
partitions quickly. Thirdly, unlike TORA, CR-TORA does not
require time-synchronization.

For the intended application model, where mobile nodes need
to periodically relay data packets to a destination (command post,
sink, gateway etc.), we show that CR-TORA outperforms TORA
in every conceivable respect. Typically, compared to TORA, CR-
TORA reduces the total number of transmissions by 60%; results
in a 15% increase in throughput; and a 40% reduction in latency.

The rest of this paper is organized as follows. Section 2 is
an overview of TORA. The proposed CR-TORA protocol is out-
lined in Section 3. Section 4 describes the simulation model used
to evaluate TORA and CR-TORA for the desired application sce-
nario. We compare TORA and CR-TORA under various mobility
models and network density, on the basis of packet delivery ra-
tios, total number of transmissions, and latency. Conclusions are
offered in Section 5.

2. TORA

In [9] Gafni and Bertsekas proposed two distributed algo-
rithms for the problem of “maintaining communication between
the nodes of a data network and a central station in the presence
of frequent topological changes.” Temporally ordered routing al-
gorithm [2] is based on a half-reversal algorithm in [9]. For a

2 Thotakura and Ramkumar/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010

subnet with N nodes and ¢ destinations, ¢ independent instances
of TORA can be used - one for each destination. In the rest of
this paper we shall assume a single destination ¢.

2.1. Overview of TORA

In TORA the route to the destination ¢ from any node is based
on the “height” of the node with respect to the destination ¢. Ev-
ery node stores heights of all neighbors for the destination, and
based on such heights, determines its own height. If a node A has
greater height than a neighbor B, then B is regarded as the down-
stream neighbor of A. Data packets can flow only downwards; i.e
from upstream to downstream.

The height of a node i is a 5-tuple (7, oid, r, 6, i). The first three
values (7, oid, r) form the “reference level” (RL) where i) 7 is the
time of creation of the RL (TORA assumes some mechanism for
time synchronization between nodes); ii) oid is the identity of
the node that created the RL; and iii) r is a reflection bit. The
value ¢ indicates the hop-count from the node which created the
RL. For example, (0,0,0,5, A) is the height of the node A with
respect to a RL (0,0, 0). The destination ¢ is always at a height
ZERO: (0,0,0,0,¢). The 5-tuple (—,—,—,—,A) implies that A
has a NULL height - or no forwarding path is available for A to
the destination. Every node stores the height of all neighbors and
categorizes them as downstream or upstream. If two neighbors
have the same height (same RL and ¢) the node with a smaller
identity is considered to be downstream of the other.

Control Packets and IMEP: TORA employs three different
types of control packets: OPT, UPD and CLR. In the proactive'
mode of TORA (which is better suited for the intended appli-
cation scenario) the destination periodically advertises its pres-
ence with an OPT packet with a fresh sequence number which
includes its height (0,0,0,0,¢). A one hop neighbor A of the
destination rebroadcasts the OPT with a height (0,0,0,1,4). A
node X, k hops away will typically broadcast an OPT with height
0,0,0,k,X). TORA can afford to use such far-reaching OPT
packets infrequently, as changes in topology that occur between
two OPT updates are handled using localized UPD and CLR
packets. One of TORA’s design goals was to minimize the con-
trol packets required for dealing with topological changes.

Every control packet broadcast by a node is intended for ev-
ery neighbor. TORA employs IMEP [8] to i) maintain a reliable
delivery neighborhood (RDN) by keeping track of nodes within
its range with bidirectional links; and ii) to provide a collision-
free foundation for TORA, by sending/processing acknowledge-
ments, and taking care of necessary retransmissions.

To lower overhead IMEP also attempts to encapsulate multi-
ple small control/ acknowledgement packets into one. For exam-
ple, when a node A submits a control packet to the IMEP layer
for transmission, the IMEP layer may include acknowledgements
for control packets previously received by A. Furthermore, in a
scenario where A has neighbors B, C, D, and E, if only B and
D had acknowledged a control packet sent by A, the IMEP layer
may retransmit the control packet explicitly indicating only the

!In the reactive mode of TORA another control packet, query (QRY), is also
used. A node with a NULL height can broadcast a QRY packet. If a node re-
ceiving a QRY packet has a NULL height it forwards the QRY; a node with a
non-NULL height will respond with a UPD.

identities C and E of neighbors which need to acknowledge the
retransmission.

Route Maintenance: A node A may loose a downstream neigh-
bor (say B) due to two reasons: i) link failure, where the IMEP
layer of A informs A that the link to B does not exist anymore ;
and ii) link reversal, where the previously downstream B declares
that it is now upstream of A, by sending a UPD packet.

The TORA Algorithm Route mainte-
IF (link-failure) nance is triggered

GENERATE-RL by a node only
ELSE //(link reversal) when it looses its

IF (all-neighbors-not-at-same-RL) last downstream
PROPAGATE-RL neighbor. The
ELSE reactions of a node
IF (r==0) to the trigger can be
EL:EFLECT_RL one of the follow-
IF (RL-created-by-me) gf’ I)GEl\;El;%APiE
CLEAR-RL > 1)

ELSE GATE RL ; iii)

REFLECT RL; and
iv) CLEAR RL.

A node i at a height (7, 0id, r, 6, i) generates a new RL by send-
ing a UPD with height (r + 1,4,0,0,7). Node i propagates an
RL by picking the highest RL among its neighbors, and among
such neighbors, the neighbor with the least height. If the height
of such a neighbor j is (rl, &', j), where rl = (v/,0id’,r") node i
sends a UPD with height (rl, 6" — 1,i). If all its neighbors are at
the same RL (7/,0id’,r = 0), i reflects the level, by sending a
UPD with height (7/, 0id’,r = 1,0,i). To clear an RL i sends a
CLR packet with height (-, —, —, —, 7).

GENERATE-RL

2.2. TORA: Pros and Cons
Consider a simple subnet topology depicted alongside, where
¢ is the destination node.

After the OPT from the destination ¢ is

propagated the heights of the nodes will @ @
be: (r1,0,¢), (rl,1,A), (v],2,C), (rl,2, B), '
(rl,3,G), (rl,3,E), and (rl,3, F), where @ @

rl = (0,0,0). Assume that the link C — A

goes down at time 7. The sequence of

events that will transpire are then as fol- @ @
lows:

a) C generates a new RL ' = (1, C, 0) by sending a UPD with
height (rl’, 0, C); G takes no action as it still has downstream
neighbors E and F;

b) F propagates the new RL by sending a UPD with height

(rl’,—1, F); even after this link reversal G has a downstream
neighbor E, hence no action is taken.

Clearly, TORA strives to reduce the number of control packets
required to deal with changes in topology, and does this well.
Where TORA does not do so well is in scenarios that result in
partitioning of the subnet. To see this consider a scenario where
A looses its link to destination ¢ at time 7. The sequence of events
are now as follows:

a) A — UPD (7/,0,A) (A generates new RL rl = (1, A, 0));

b) B — (rl,-1,B); C — (rl,—1,C) (B and C propagate new
RL);

Thotakura and Ramkumar/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010 3

¢) E - (rl,-2,E) and F — (rl,-2,F) (E and F propagate
new RL);

d) G — (rl',0,G) (G reflects RL as rl’ = (1,4, 1));

e) F - (l',-1,F),C - (rl',-1,C)and E — (rl',-1,E) (F,
C and E propagate reflected RL);

f) B — (rl’, -2, B) (B propagates reflected RL);

g) A — CLR (A detects partition);

h) B - CLR; C — CLR (propagating CLR in the isolated
subnet);

i) G » CLR, F - CLR; E — CLR (propagating CLR in the
isolated subnet);

Note that a UPD with a new RL has to reach all nodes in the parti-
tion. The RL is then reflected and returned to the originator of the
RL, which detects a partition. Following this the originator of the
RL creates a CLR packet which needs to be propagated through-
out the partitioned subnet. If the average per-hop processing de-
lay is A, and L is the longest path in the partitioned subnet, for
a time of up to 3LA several nodes in the partitioned subnet may
possess non-NULL heights which are actually invalid. During
this time data packets created by nodes in the partition may be re-
layed back and forth till the time the nodes realize that they do not
actually have a valid height. Another disadvantage of TORA is
the need for some mechanism for time-synchronization between
nodes to correctly interpret the field 7 in an RL.

Collisions: Perhaps the most acute of TORA’s shortcomings is
its susceptibility to collisions. Once again consider a scenario
above where A reverses its link to C by sending a UPD packet.
Now assume that the packet was lost due to collision. At this
point A assumes that C is its downstream neighbor, while C
assumes that A is downstream, thereby creating a simple loop.
More complex loops can also result due to collision [7]. That
TORA by itself was not designed to address collisions is the rea-
son that mandates a lower layer for this purpose. While TORA
itself requires low overhead for control packets, when considered
together with the lower layer for sending / processing acknowl-
edgements to / from every neighbor, TORA becomes far less ap-
pealing.

3. Collision Resistant TORA

Like the proactive version of TORA, CR-TORA is intended
for application scenarios where all mobile nodes require to send
data packet to a single (possibly mobile) destination. Similar to
proactive TORA, CR-TORA employs CLR, UPD and OPT pack-
ets, and data flows only downwards.

The primary difference between CR-TORA and TORA is that
CR-TORA (as the name implies) has some in-built features to
handle collisions, and thereby eliminates the need for a lower
layer like IMEP to address collisions. In doing so CR-TORA
also lowers the control packet overhead and the settling time
during network partitions, and eliminates the need for time-
synchronization.

Some of the other salient differences between TORA and CR-
TORA are:

i) CR-TORA does not use reference levels; the height of a
node i is a single value ¢; which is typically the number of
hops from the destination.

ii) Two neighbors i and j at the same height (or 6; = ¢;) do not
consider each other as upstream/downstream based on their
identities. In CR-TORA a node i is downstream of j only if
(5,‘ <d j

3.1. CR-TORA: Principle of Operation

Recall that in TORA a node responds to link-failures or link-
reversals by generating an RL, or propagating an RL, or reflect-
ing an RL, or clearing an RL. In CR-TORA nodes respond by
creating CLR, or propagating CLR, or creating UPD, or propa-
gating UPD, or retransmitting CLR.

The basic principle of operation of CR-TORA is as follows.
A node losing its last downstream link creates a CLR packet. If
the receipt of a CLR packet leaves a node X with no downstream
neighbor, X propagates the CLR right away. However, if X has
other downstream neighbors it starts a timer which runs for a du-
ration Ty. While the timer is running X may continue to receive
other control packets. If (during this time) other control pack-
ets cause X to loose its last downstream neighbor, X propagates
a CLR right away. On the other hand, if X retains one or more
downstream neighbors after the timer expires, X creates a UPD.
Neighbors of X with NULL heights then propagate the UPD.
Most often CLR packets are created when a node looses its last
downstream neighbor. However there are other scenarios (which
could result due to collisions) which would also mandate creation
of a CLR packet, or retransmission of a CLR packet.

To facilitate comparison of TORA and CR-TORA we shall
once again consider the same example subnet considered for
TORA in Section 2.2. At this point we shall ignore collisions (a
more detailed description of CR-TORA follows in Section 3.2).
After the OPT from the destination ¢ is propagated the heights
of the nodes will be (0, ¢), (1,A), (2,B), (2,C), (3, E), (3,G), and
(3,F). Note that in CR-TORA links between nodes that have
same height are undirected (unlike TORA).

@ @ Assume that as earlier, the link C —

A goes down. The typical sequence of

events in CR-TORA will be as follows:

a) C — CLR (C creates CLR);

b) F — CLR; G — CLR; (F and G propagate CLR); E waits
for a time Ty ;

¢) (No clear from B) E — UPD, 6g = 3 (E creates a UPD);

d) G — UPD, 6 = 4 (G propagates UPD);

e) F — UPD, 6p =5;C — UPD, 6¢ = 5 (F and C propagate
UPD).

In a scenario where A looses its link to destination ¢ (causing
a subnet partition) the sequence of events that transpire in in CR-
TORA will be:

a) A — CLR (A creates CLR);

b) B — CLR; C — CLR (B and C propagate CLR);

¢) E -5 CLR; F —» CLR; G — CLR (E, F and G propagate
CLR).

As can be seen readily by comparing the above sequence of
events with those for TORA (in Section 2.2), TORA generates

4 Thotakura and Ramkumar/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010

lower number of control packets compared to CR-TORA when
there is no network partition. However, this does not necessarily
mean that CR-TORA has a higher overhead under such scenarios
as we have ignored the overhead for IMEP in TORA. Even if
IMEP overhead is ignored, TORA still generates a substantially
higher number of control packets compared to CR-TORA when
partitioning occurs in the subnet.

3.2. The CR-TORA Protocol

In the rest of this section we shall take a more in-depth look at
the CR-TORA protocol.

3.2.1. CLR Event Identifiers (CEI)

In CR-TORA a CLR is created in response to a specific event

- like a broken link. We shall see soon that there are two other

specific events that lead to creation of a CLR. A node creating a
CLR assigns a unique CLR event identifier (CEI) to the event.

0 For example, if the link B — A goes

C down, B will set its height to NULL, and

create a CLR with CEI «. Node D, which

@ @ on receipt of the CLR-a, has lost its only

downstream neighbor sets its height to

NULL and simply propagates CLR-a. On the other hand, if the

node A goes down, two different CEIs will be created: one by B,

say CLR-a, due to the loss of the link B — A, and one by C, say

CLR-B, due to the loss of the link C — A.

Unlike UPD reference heights in TORA, CR-TORA CEIs are
not tied to time - or time synchronization is not necessary in CR-
TORA. The only requirement is that no two CEIs should be the
same. A simple strategy to accomplish this is choose the CEI by
concatenating the identity of the creator with a sequence number
maintained by the creator. In this case a CLR created by a node
C will have a CEI C || g.. The next CLR created by C will have a
CEIC || (g¢ +1). In the rest of this paper we shall simply employ
lower case Greek letters to represent CEIs.

3.2.2. CLR-List and UPD-List

Every node maintains a CLR-list and UPD-list, both being a
list of CEIs. Both lists are emptied from time-to-time, under dif-
ferent circumstances. The CLR-list C; of node i is a list of CEIs
made known to i, through CLR packets received by i. Both CLR
and UPD packets broadcast by a node i will include its CLR-list?
C,‘Z

i) a CLR from i is of the form [i, CLR,C;];
ii) a UPD from i is of the form [i, UPD, é;, C;].

When a node i with CLR-list C; receives a packet [j, CLR, C;],
it adds all CEIs in C; that were not already in its CLR-list C; to
its CLR-list. Thus, after the CLR is received C; = C; U C;.

A UPD is created by node i only after its Ty-timer fires. The
timer is started when i receives a CLR, and it still has at least one
downstream neighbor. If i has at least one downstream neighbor
left even after the timer fires, i creates a UPD which includes C;.

2 As we shall see later in Section 4 of this paper, in our simulations the average
number of CEIs that accompany a CLR or a UPD packet was found to be less
than 2; thus the size of UPD and CLR packets in both TORA and CR-TORA are
comparable.

As soon as the UPD is sent, i i) creates a UPD-list U; = C;; and
ii) empties CLR-list C;.

A node propagating a UPD merely empties its CLR-list - it
does not create a UPD-list. A node will propagate a UPD only if
it had a NULL height before it received the UPD. A node i at a
NULL height receiving a UPD [j, UPD, 6;,C|] verifies if C; C C;
(in other words, i checks if all CEIs known to i are “addressed”
by the UPD by j). Only if C; C Cj, i sets its height to 6; = §; + 1,
propagates UPD [i, UPD, 6;, C;], and empties its CLR-list C;. On
the other hand, if C; ¢ C; node i will retransmit CLR [i, CLR, C;].

3.2.3. Other CLR Creation Scenarios

When a node i with a non-NULL height receives a UPD
[/, UPD,6;,C;]. Assume that j was i’s last downstream neigh-
bor, and the height §; announced by j is such that 6; > ¢; (or
this UPD causes i to loose its last downstream neighbor); Now
i creates a CLR (with a new CEI). Such a scenario arises when
the CLR sent by j is lost due to collision, and i creates an UPD
assuming j as its downstream neighbor; which (UPD generated
by i) is then propagated by ;.

When a node i with a non-NULL height receives a CLR
[/, CLR,C;] which leads to the loss its last downstream neighbor,
i checks if any of the CEIs in C; is also present in i’s UPD-list
U;. If not (or C; N U; = 0) i propagates CLR C;. On the other
hand, if C; N U; # 0, then i creates a new CEI. The new CEI
is added to i’s CLR-list C; before i broadcasts CLR C;. When a
node creates a new CEI its CLR-list and UPD-list are emptied.

Thus, while a UPD is created by a node i only under one condi-
tion (after the T timer fires, if i retains a downstream neighbor),
a CLR with a new CEI is created by a node i under three condi-
tions:

1) i looses its last downstream link;

ii) 7, which had a downstream neighbor j, receives a CLR
which renders it with no downstream neighbor, and at least
one of the CEIs that accompany the CLR packet by j is
included in the UPD-list of i. Such a scenario can occur
if i had prematurely created a UPD assuming that j is still
downstream (the CLR sent by j earlier may have been de-
layed or lost due to collision).

iii) When i receives a UPD packet from its last “downstream”
neighbor j, node i finds that §; > ¢; (or i’s belief that j was
downstream is recognized to be wrong).

3.3. The CR-TORA Algorithm

In CR-TORA nodes react to some triggers like loss of last
downstream link, firing of the Ty timer, or receipt of control
packets like CLR, UPD and OPT, depending on the state of the
node. The state of a node i is defined by 1) latest OPT sequence
number ¢,; ii) height - ¢;; iii) a neighbor-table with list of neigh-
bors and their height (we shall represent the height of a neighbor
jasH' ;); iv) a CLR-list C;, and v) a UPD-list U;. In addition, vi) a
binary flag DN represents that the node has a down-stream neigh-
bor; vii) a binary flag TR represents that the timer is currently
running. In the pseudo-code describing the CR-TORA algorithm
below, we shall use the notation 9;_ to represent the height of a
node i before it received a control packet (after the packet is pro-
cessed, the height 6; may change).

Thotakura and Ramkumar/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010 5

1. Node i looses last downstream link:
CREATE CLR;flush C;,, U;;

2. Node i receives [j, CLR,C;]:

H; =NULL;

IF (6, == NULL) return;

C; = Cj UGCi;

IF (DN&(!TR)) start-timer;

IF (!DN)
IF (Cj N U; == 0) PROPOGATE CLR;
ELSE {CREATE CLR;flush C;,U;;}

3. Timer fires:
IF (DN)
{CREATE UPD;U; = C;;flush C;;}
4. Node i receives [j, UPD,6;,C;]:
Hj =63
IF (6, == NULL)
IF (C; CCj) PROPOGATE UPD;
ELSE RETX CLR;
ELSE IF (!DN)
{CREATE CLR;flush C;,U;;}
An OPT packet relayed by a node i is of the form
[i, OPT,6;, 4], where ¢, is the OPT sequence number chosen
by the destination.

5. ireceives [j, OPT,6;, ¢,

IF (¢, > dy)
{bg=05 H =6
6;=0;+1; flush C;, U,
SEND [i, OPT,5;,¢,1;}

IF (¢, = ¢¢) H} =03

A node i receiving an
OPT [j,OPT,6;,¢,'] with
a fresh sequence num-
ber, i) sets its height to
6; = 0; + 1; ii) retransmits
the OPT; and iii) empties
its CLR-list and UPD-list.
The CLR-list and the UPD-lists of a node i are also flushed clear
when a i creates a new CLR. When a node propagates a CLR its
UPD-list is cleared.

4. Simulations

Simulations were carried out to evaluate the performance
of TORA and CR-TORA using random realizations of subnet
topologies with mobile nodes.

4.1. Simulation Environment

The simulating environment generates N = 150 randomly
placed nodes in square region with edges of size 500 meters. The
range of each node was assumed to be R meters (simulations were
performed for R = 55, 60, 65). The destination is randomly cho-
sen. Every node attempts to send data packets to the destination
periodically - once every Tp seconds on an average (simulations
were performed for Tp = 1,2, 3 seconds). However, a node sends
a data packet only if it has a non-NULL height. All simulation
runs were performed for a network time of 100 seconds.

Mobility: To model mobility, at random instances of time some
nodes were moved by random distances in X and Y direc-
tions (distance uniformly distributed between +15 meters); some
nodes were turned off; some of the nodes that are currently off
were turned on and relocated at a random position. We simulated
two mobility models. In the model M-I with lower mobility, on
an average, during every second, i) M,, = 7.5% of the total num-
ber of nodes were moved; ii) M, = 3.75 % of the nodes were

turned off; and 50 % of nodes that are currently off are turned on.
For the higher mobility model (Model M-II) the parameters were
M, = 15% and M, = 7.5%. In applying the mobility model,
the only difference between the destination and the other nodes
is that the destination is never turned off.

MAC Layer: The channel bit-rate was assumed to be 2Mbys.
Nodes employ p-persistent CSMA with p ~ 1/20. The car-
rier sense delay was assumed to be 7., = lusec sec. In other
words, two nodes within the range of each other may not sense
each other’s transmission if they begin their transmissions within
Tes = lusec of each other®. If a node senses that the channel
becomes available at a time ¢, it begins its transmission at a time
t + x7.s where x is random, and uniformly distributed between 1
and 20. A packet is received successfully by a node (without col-
lision) only if not more than one of the receiver’s neighbors (the
sender of the packet) was transmitting during the entire duration
of the packet. Most collisions at a node occur due to the “hidden
station problem” - overlapping transmissions from neighbors of
a node who are not within each other’s range.

4.1.1. Control, Data and HELLO Packets

For both TORA and CR-TORA the destination sends OPT
packets once every T,,; = 5 seconds. The duration of con-
trol packets were assumed to be 0.25 msec (about 64 bytes).
The HELLO packets were 0.0625msec long (about 16 bytes).
IMEP ACK packets (only for TORA) were also assumed to be of
0.0625msec duration. For both protocols we assumed a random
processing delay in each node, uniformly distributed between 1
and Smsec.

In TORA IMEP attempts to encapsulate multiple control/ACK
packets into one IMEP packet. To offer a collision-free envi-
ronment for TORA, IMEP sends ACKs for every control packet
received. If a node has not heard an ACK from one or more of its
neighbors within a time 7, = 20 ms, it retransmits the control
packet and explicitly indicates the identities of nodes which had
not acknowledged the previous transmission. Only such nodes
will need to send an ACK for the retransmitted packet. We lim-
ited the number of retransmissions to 2.

Data packets were of duration 1 msec (about 256 bytes). The
maximum duration of IMEP packets was set at 1.0625 msec (272
bytes) to permit an ACK for a data packet to be sent along with
the data packet. Only CSMA (no RTS/CTS handshake is used)
was used even for data packet transmissions due to the relatively
small size of packets.

In both TORA and CR-TORA a node A with multiple down-
stream neighbors chooses the one with the least height as the next
hop to forward a data packet. If the data packet transmitted by
A to a neighbor B is deemed unsuccessful, then A sends the data
packet to its next downstream neighbor (if available). In both pro-
tocols a node A sending a data packet to a neighbor B attempts to
overhear the retransmission of the data packet within a duration
Tk, failing which the data packet is retransmitted. The number
of retransmissions are limited to 2 before the data transmission is
deemed unsuccessful.

For maintaining dynamic list of neighbors every node tries to
break silence once every T seconds. If a node A has not had the

31usec is a conservative estimate given that the propagation delay for the max-
imum distance of 65 m is less than 0.25usec.

6 Thotakura and Ramkumar/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010

need to transmit a control or data packet (or ACK in TORA) in the
last T; seconds, A sends a HELLO packet to notify its presence
to its neighbors. If a node A has not heard a transmission from a
neighbor B for more that 27 seconds, the neighbor B is removed
from A’s neighbor table (if B happened to be A’s last downstream
link, link-failure route maintenance activities are triggered).

4.2. Results

Many simulation runs were performed; each run was for a net-
work time of 100 seconds. The simulations were instantiated by
the destination, by sending an OPT packet. Some of the parame-
ters that were measured by the simulations were

a) Nyt = Neyt + Nopr + Nuek + Nyggt total number of pack-
ets: which is the sum total numbers of control packets, OPT
packets, ACK packets, and data packets.

b) N, total number of transmissions; for CR-TORA N,,, =
Niy; for TORA N;, < Ny, as packets queued for transmis-
sion can be aggregated by the IMEP layer.

¢) ngq: number of data packets instantiated by all nodes; note
that ng,;, << Ny, as each of the unique ng4, data packets
will need multiple transmissions/retransmissions over mul-
tiple hops.

d) ng,: total number of data packets reaching the destination;

e) t5,: average latency for data packets.

f) n.,: total number of last-downstream-link-loss events (in
both TORA and CR-TORA it is such events that trigger a
sequence of localized control traffic).

Table 4.2 gives a detailed comparison of TORA and CR-
TORA for one specific choice of parameters: viz, T,, = 35,
R = 60, and Tp = 1 second for two mobility models M-I and
M-IL

Ideally, in the span of 100 seconds, each node should have
created one data packet - or I00N = 15000 data packets should
have been created. However, as data packets are sent by a node
only when they have a non-NULL height, the actual number of
created data packets is less than 15,000. Ultimately the intent
is to increase the number of packets received by the destina-
tion, while lowering the cost. In the TORA subnet for the mo-
bility model M-I, the destination receives 7071 packets, com-
pared to 8742 in the CR-TORA subnet. One simple measure
of the “cost” is the total number of transmissions (by all nodes
together). In the TORA subnet 624,869 TORA packets are ag-
gregated into 446,861 IMEP transmissions compared to 231,169
packets (and the same number of transmissions as there is no ag-
gregating lower layer) in CR-TORA. Furthermore, the average
latency in TORA is 0.09 seconds while it is only 0.05 seconds in
CR-TORA. Thus, CR-TORA outperforms TORA in every con-
ceivable respect. CR-TORA results in a 15% higher throughput
with a 40% reduction in latency, for 40% of the cost.

Data Packets: 1t is interesting to note that slightly more data
packets were created in the TORA subnet (n4,, = 13615) com-
pared to ng,;, = 13229 for CR-TORA. The reason for this is
TORA'’s long settling time during subnet partitions, during which
nodes possess a non-NULL height while they do not actually
have a physical path. This is also one reason for the substan-
tially higher number of data packet transmissions N, in TORA
compared to CR-TORA (about 1.7 times higher).

While both TORA and CR-TORA do not strive to determine
the shortest path, the average path length for TORA is 9.9 hops
compared to 7.1 for CR-TORA. This is in part due to the fact that
a node does not consider a same height neighbor as downstream.
Typically, CR-TORA heights reflect the actual number of hops
between the node and the destination. Lower path lengths obvi-
ously lead to in lower latency and data traffic. Furthermore, the
substantially higher Ndat in TORA also results in more packets
being queued, leading to increased latency.

Route Maintenance Overhead: In both TORA and CR-TORA
a series of route maintenance steps are trigerred by an event
where a node looses its last downstream neighbor. The number
of such events n,, were also measured during the simulations.
While both TORA and CR-TORA were simulated for the ex-
act same network topology (and mobility) note that the value n,,
is lower in TORA (198) compared to CR-TORA (259); as CR-
TORA does not consider a neighbor of the same height as down-
stream, the loss of the last downstream neighbor occured more
often in CR-TORA. However, even while more maintenance ac-
tivities are trigerred, CR-TORA mandates lower number of main-
tenance packets. Apart from data packets, the TORA subnet in-
voked 624869 — 312374 = 312,495 “other” packets (HELLO,
OPT, control packets like UPD and CLR, and IMEP ACK). In
CR-TORA the number of “other packets” is substantially lower
at 48, 873.

Effect of Mobility: As can be seen from Table 1 CR-TORA out-
performs TORA by similar margins even for the scenario with
increased mobility (model M-II instead of M-I). While increased
mobility results in increased overhead and lower throughput for
both TORA and CR-TORA, the increase in TORA overhead
(866082 — 624869 = 241,213) is 10 times greater than the corre-
sponding increase in CR-TORA (254318 — 231, 169 = 23, 149).
This significant increase in TORA traffic also affects the latency
t1er in TORA which is increased by 0.02sec (compared to a mere
0.002sec increase in CR-TORA).

4.2.1. Effect of Network Density

In our simulations network density is controlled by adjusting
the value of the range R. For the three of choices of R = 55, 60, 65
meters, the total number of nodes connected to the destination
(averaged over many random realizations) are 94, 128 and 141
(63%, 85%, and 94%) respectively. As can be seen from Fig-
ure 1(a) CR-TORA offers greater throughput in all three cases.

Figure 1(b) depicts the maintenance traffic generated for differ-
ent network densities. An increase in network density (and hence
connectivity) will lead to lower number of maintenance events
n., leading to lower maintenance traffic. However increased net-
work density can also lead to higher probability of collisions, and
consequently an increase in traffic due to retransmissions. The
total number of control packets N.,; reduced with increased net-
work density for CR-TORA; on the other hand, in TORA N
increases for high network densities due to a large number of
collisions induced by IMEP retransmissions.

Increased connectivity resulted in an increase in the total num-
ber of data packets created (7,4,) in both TORA and CR-TORA,
and consequently led to greater data traffic (Ng,). As can be
seen from Figure 1(c) the increase in Ny, with network density

Thotakura and Ramkumar/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010 7

Table 1. TORA (T) vs CR-TORA (CR-T) for two mobility models M-I and M-II.

Ntat/Ntx Ndat Nsuc Ndat Liat ey
M-I T 624,869/446,861 13,615 7071 312,374 0.09 198
M-I CR-T 231,169 13,229 8742 182,296 0.05 259
M-I T 866,082/632,243 13,261 6232 459,083 0.11 397
M-I CR-T 254,318 12917 7621 195,461 0.052 512
_ 80% (a) w%zooo
B 70% 24000 Il TorA
%ﬂ 60% «s 160()0 M cr-Tora
E 50% I | E 8000
(R = 55)(R = 60XR = 65 (R = 55)(R = 60XR = 63)
., 500000 5 012 (d
k= 375000 g 0.09
N = 250000 § 0.06
a 125000 r % 0.03
0

(R = 55)(R = 60XR = 65)

(R = 55)(R = 60XR = 65)

Fig. 1. Comparison of TORA and CR-TORA for different network densities; (a): Throughput; (b): Maintenance Traffic; (c): Data Traffic; (d): Latency.

is substantially higher for TORA, due to the higher number of
collisions.

If we ignore collisions, one would expect lower latency with
higher R due to a reduction in the number of hops. However
increase in collisions with network density will create more re-
transmissions and thus increase the latency. As can be seen in
Figure 1(d), in FR-TORA the two opposing effects almost bal-
ance out each other, causing only a very small increase in latency
with increasing network density. On the other hand, due to the
substantially higher number of collisions in TORA, the latency
in TORA increases more rapidly with network density.

Recall that the TORA subnet generates more “useless” data
packets (which will ultimately be undeliverable) as nodes possess
invalid non-NULL heights for long durations under scenarios in-
volving network partitions. We expect this phenomenon to be
more pronounced for low density networks where network parti-
tions are more likely to occur. As expected, for R = 55 the total
number of data packets originated by the TORA and CR-TORA
subnet are ng,; = 13282 and ng4,; = 11588 respectively. The total
number of data packets delivered are ny,. = 5835 for TORA and
nge = 6612 for CR-TORA.

4.2.2. Waiting Time Ty

One new parameter introduced by CR-TORA is the waiting
time Ty. Recall that if a node receiving a CLR packet has other
downstream nodes it waits for a duration Ty before it sends a
UPD. We experimented with various waiting times ranging from
10 to 20 msec. Our simulations show that a waiting time of
15 msec maximized throughput (fraction of data packets that
reached the destination). However the performance of CR-TORA
is not very sensitive to this parameter. Between 10 to 20 msec the
worst and best case scenarios varied only by less than 5%.

5. Conclusions

For a connected ad hoc subnet with N nodes, most MANET
routing protocols attempt to facilitate paths between all possible
((1;/)) pairs of nodes. This is however an overkill for many practi-
cal MANET applications where every node requires a path only
to a single sink. TORA has been explicitly designed to facilitate
multiple paths from all nodes to a single sink. While some au-
thors have compared the performance of TORA with other rout-
ing protocols with mixed results [10, 11, 12], such efforts often
unfairly assume an application setting with the need to establish
paths between all (2’) pairs of nodes, thereby ignoring scenarios
for which TORA is uniquely well suited (a small number of mo-
bile/fixed destinations and a large number of mobile nodes).

The main pitfall of TORA is its reliance on an expensive lower
layer. As is evident from the simulation results presented in Sec-
tion 4, IMEP retransmissions following collisions is the primary
reason for poor performance of TORA - both in terms of increase
in latency and the number of transmissions. Unfortunately, it is
not possible to use TORA without IMEP as collisions can create
loops in the TORA routing protocol [7].

The main motivations for CR-TORA were two-fold: that the
goal of TORA is an important one for many application scenar-
ios, and that there are compelling reasons to eliminate the need
for an expensive lower layer. Consequently, the primary differ-
ence between CR-TORA and TORA is that CR-TORA has in-
built features that address collisions, and thereby eliminates the
need for IMEP. Apart from eliminating the need for a lower layer
the other beneficial properties of CR-TORA are 1) lower settling
time during network partitions (leading to less instances of “use-
less” data traffic); ii) lower latency due to shorter path lengths,
which is primarily attributable to the fact that same height neigh-
bors are not considered as downstream; and iii) lack of the need
for time-synchronization.

Thotakura and Ramkumar/Information Sciences and Computer Engineering, Vol. 1, No. 1, 2010

Simulations show that, compared to TORA, CR-TORA re-
duces the number of total number of transmissions by 60%;
results in a 15% increase in throughput; and a 40% reduction in
latency. CR-TORA is thus a promising protocol for many practi-
cal MANET/sensor networks.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(91

E. M. Royer and C.-K. Toh, “A review of current routing protocols
for ad-hoc mobile wireless networks,” IEEE Personal Communi-
cations, vol. 6, pp. 46-55, 1999.

V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” in INFOCOM, pp. 1405—
1413, 1997.

V. Park and S. Corson, “Temporally ordered routing algorithm
(tora) version 1 functional specification,” in IETF MANET, Internet
Draft, 2001.

P.Johanson and D. Maltz, Dynamic source routing in ad hoc wire-
less networks. Kluwer Publishing Company, 2001.

C. Perkins, E.Royer, and S. Das, Ad hoc On-Demand Distance Vec-
tor (AODV) Routing. Aug 2002. Internet Draft, draft-ietf-manet-
aodv-11.txt.

C. Perkins and P. Bhagvat, “Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile computers,”
in ACM SIGCOMM Symposium on Communication, Architectures
and Applications, 1994.

E. Weiss, G. R. Hiertz, and B. Xu, “Performance analysis of tem-
porally ordered routing algorithm based on ieee 802.11a,” in /[EEE
61st Vehicular Technology Conference (VIC), May 2005.

M. S. Corson, S. Papademetriou, P. Papadopoulos, V. D. Park,
and G. Qayyum, “An intemet manet encapsulation protocol (imep)
specification,” in Interact-Draft, August 1998. draft-ieff-manet-
imep-spee- 01.txt.

E. M. Gafni and P. Bertsekas, “Distributed algorithms for gener-
ating loop-free routes in networks with frequently changing topol-
ogy,” IEEE Transactions on Communications, vol. 29, pp. 11-18,
1981.

[10] V. Park and S. Corson, “A performance comparison of the
temporally-ordered routing algorithm and ideal link-state routing,”
Proceedings of IEEE International Symposium on Systems and
Communications, IEEE Computer, pp. 592-598, 1998.

[11] Q. He, H. Zhou, H. Wang, and L. Zhul, “Performance compari-
son of two routing protocols based on wmn,” in 2nd International
Conference on Wireless Broadband and Ultra Wideband Commu-
nications, (Sydney, Australia), 2007.

[12] J.Broch, D., A. Maltz, D. B. Johnson, Y.-C. Hu, and J. G. Jetcheva,
“A performance comparison of multi-hop wireless ad hoc net-
work routing protocols,” in In Proceedings of the Fourth Annual
ACMJIEEE International Conference on Mobile Computing and
Networking, (MobiCom 98), pp. 85-97, October 1998.

Mahalingam Ramkumar is an Associate Pro-
fessor in the Department of Computer Science
and Engineering, Mississippi State University.
He received his Ph.D. in Electrical Engineer-
ing from New Jersey Institute of Technology,
Newark, NJ, (2000), MS in Electrical Commu-
nication Engineering from Indian Institute of
Science, Bangalore, India (1997) and Bachelor’s Degree in Engineering
from University of Madras, India (1987). His research interests include
Trustworthy Computing, Network Security, Cryptography, and Mobile
Ad hoc Networks.

Vinay Thotakura completed his B-tech degree
in Computer Science with distinction from VR-
SEC, Nagarjuna University, India, in 2005.
He received his M.S. degree in Computer Sci-
ence from Mississippi State University, MS, in
2009. He is currently a research assistant and
Ph.D. candidate in the Department of Com-
puter Science and Engineering at Mississippi
State University. He research interest is secur-
ing MANET routing protocols using trustworthy MANET modules.

